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ABSTRACT
We combine in a single framework the two complementary benefits of χ2-template fits and
empirical training sets used e.g. in neural nets:χ2 is more reliable when its probability density
functions (PDFs) are inspected for multiple peaks, while empirical training is more accurate
when calibration and priors of query data and training set match. We present aχ2-empirical
method that derives PDFs from empirical models as a subclassof kernel regression methods,
and apply it to the SDSS DR5 sample of> 75, 000 QSOs, which is full of ambiguities. Ob-
jects with single-peak PDFs show< 1% outliers, rms redshift errors< 0.05 and vanishing
redshift bias. Atz > 2.5, these figures are2× better. Outliers result purely from the discrete
nature and limited size of the model, and rms errors are dominated by the instrinsic variety of
object colours. PDFs classed as ambiguous provide accurateprobabilities for alternative solu-
tions and thus weights for using both solutions and avoidingneedless outliers. E.g., the PDFs
predict 78.0% of the stronger peaks to be correct, which is true for 77.9% of them. Redshift in-
completeness is common in faint spectroscopic surveys and turns into a massive undetectable
outlier risk above other performance limitations, but we can quantify residual outlier risks
stemming from size and completeness of the model. We proposeamatched χ2-error scale for
noisy data and show that it produces correct error estimatesand redshift distributions accurate
within Poisson errors. Our method can easily be applied to future large galaxy surveys, which
will benefit from the reliability in ambiguity detection andresidual risk quantification.
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1 INTRODUCTION

Photometric redshifts are an attempt to attribute redshiftvalues to
locations in colour space occupied by objects for which we donot
have spectroscopic redshifts. Statistically more useful is the aim
to attribute expected redshift distributionsn(z) to these locations,
which are correct in a frequentist interpretation. However, photo-z
practitioners are often limited to determine a Bayesian probability
distributionp(z), which resembles the state of our knowledge, but
differs from the frequentistn(z) by manifestations of ignorance
that have to be incorporated to safeguard against known unknowns
in the data and in the redshift model.

Photo-z’s are obtained using a model expressing the expected
colour as a function of redshift and a variation of possible intrin-
sic colour-affecting parameters. These models come in two distinct
flavours with different advantages: (i) template-based models allow
the observer to interpret data in empirically unexplored territory by
extrapolating the templates in magnitude and redshift space; (ii)
empirical models use a subset of the observed objects with inde-
pendently known redshift, also known as training sets, which are
conveniently in the same calibration system as the objects to be

estimated. If the training set is truly random, it will also provide
the correct priors to the statistical redshift estimation.If it is not,
a weights approach as suggested by Lima et al. (2008) helps tofix
the priors. As a result, smaller or pioneering photo-z surveys have
no choice but to use template-based models, while large surveys
with small Poisson errors on any of their results wish to control
their systematics in the best possible ways and prefer the empirical
model, that minimises systematics in the calibration and priors.

After obtaining the data and choosing the model, there re-
mains the choice of estimation code to relate the two. Currently,
the two perhaps most advocated categories areχ2-methods (e.g.
Benitez (2000); or Wolf et al. (1999) for galaxies and QSOs) and
artificial neural nets (ANNs, e.g Collister & Lahav 2004). Ear-
lier work has included global or piece-wise polynomial fitting
between colours and redshift (Koo 1985; Connolly et al. 1995).
Later the empirical fitting approach has developed into kernel re-
gression methods to optimise local fits (e.g. Wang et al. 2007;
Boris et al. 2007); these include nearest-neighbor techniques (e.g.
Csabai et al. 2003) and support vector machines (e.g. Wadadekar
2005). Budavari (2009) articulates a unified framework. Here, we
note the following general characteristics:
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(a) χ2 model testing assumes a parametrised model to be free
of error by definition and then uses error information on the data to
determine probability density functions (PDF) and hence estimates
of expectation values and likely errors for the parameters.If the
model is correct and error-free, the PDF is expected to be correct,
whether the model originates in templates or empirical data.

(b) Kernel regression uses model realisations with any origin
and error properties to estimate a mapping from object features
onto parameters and requires smoothing over a local region of the
model. When the smoothing (kernel) function is a Gaussian that
resembles the data errors, it is identical toχ2 model testing.

(c) Conventional ANNs with a single-number output acting as
a parameter estimate deliver unique results. If several parameter
values are possible given the same input features, they tendto settle
for the most likely one. Errors can be estimated e.g. by resampling
the input object as a Gaussian on its error distribution and collecting
the outputs into a PDF, which may deliver the possible parameter
range of the main solution but might still not help with ambiguities.
Probabilistic neural networks (PNNs) which output redshift PDF
vectors are currently explored.

The advantage ofχ2 model testing and all PDF-generating
techniques is that they evaluate a probability distribution across the
range of considered parameters (e.g. redshift) and hence provide
a warning signal for ambiguities arising from multiple solutions
corresponding to localχ2 minima. This includes nearest-neighbor
techniques that produce PDFs after resampling the input object on
its error distribution (as shown for QSOs by Ball et al. 2008). In
contrast, conventional ANNs deliver the same unique redshift es-
timate when presented with the same input on different occasions,
and thus do not record the relative likelihood of alternative solu-
tions.

Traditionally, practitioners have combined template-based
models withχ2-techniques (starting with Baum 1962) and em-
pirical training set models with ANNs or kernel regression (e.g.
Firth et al. 2003). However, the reliability ofχ2-PDFs has been
plagued moderately by model deficiencies that could be overcome
by using empirical models. This has inspired the following explo-
ration of theχ2-technique with empirical models, which is an at-
tempt to combine their respective advantages and derive PDFs that
are statistically correct and reliable.

In this paper, we choose to look at photometric redshifts for
QSOs in order to confront us with a dataset full of ambiguities (see
Sect. 2). We generally use Gaussian kernel functions, and inpartic-
ular a pureχ2-empirical approach, described in Sect. 3, on nearly
noise-free data. In Sect. 4 we discuss the resulting performance and
summarise persistent issues. We look particularly at redshift am-
biguities and show how we can use ambiguous objects in further
analysis. Sect. 5 aims to give analytic explanations for theorigin
of redshift error floors, biases and outliers, and supports them with
examples from the data. It also provides a framework to evaluate
outlier risks in data sets beyond spectroscopic completeness.

In Sect. 6 we explore the requirements for theχ2 error scale
in the presence of model errors, which allow us to bring the error
estimates from the width of the PDF in line with the true redshift
errors and to predict how they deviate with different choices of er-
ror scale. We note the potentially conflicting interests of optimising
a kernel smoothing scale, and propose an approach that combines
requirements for smoothing and the statistical error scalein one
choice. Finally, using data and a model with different noiselev-
els we demonstrate a reconstruction of a redshift distribution that
shows only deviations in line with Poisson uncertainties.

2 DATA

The purpose of this experiment is to combine the advantages of em-
pirical training samples (calibration and priors implicitly correct)
with the advantage of theχ2-method (ambiguity warning based on
a full PDF). We wish to use a data set with plenty of ambiguities to
evaluate the benefits of our method.

For most purposes, a large sample of galaxies would be most
relevant. However, the only observed galaxy samples large enough
for empirical training are provided by SDSS at relatively low red-
shifts z . 0.3, while strong ambiguities only appear for galax-
ies at z > 1. This is why conventional neural networks and
nearest-neighbor-techniques have produced extremely robust red-
shift estimates of the SDSS galaxy sample with precisions ofσz ≈
0.02 and virtually no outliers (Firth et al. 2003; Csabai et al. 2003;
Oyaizu et al. 2008a). Optical QSO samples are, however, fullof
redshift ambiguities and thus an ideal testing ground for our pur-
pose.

We opted for the SDSS QSO catalogue by Schneider et al.
(2007), which is based on SDSS DR5 data but further cleaned and
amended. It contains∼ 77, 000 QSOs ranging in redshift from 0.08
to 5.4, and includes SDSSugriz photometry as well as 2MASS
data for matching objects. A morphology flag marks extended-vs.-
unresolved sources (M = 1 or 0), and where we include it in the
χ2 we assume a fiducial error ofσM = 0.2 (though this choice
makes little difference asM does not carry critical information).

Most objects in the catalogue have vanishing photometric er-
rors on theirugriz measurements, as they are all from a sample
which was sufficiently bright for complete spectroscopic follow-
up. Exceptions are the bluer bands inz > 2.5 QSOs, which con-
tain redshifted intergalactic Lyman forest absorption that renders
objects fainter and possibly undetected. We found that errors on ob-
served object colours are usually smaller than the intrinsic colour
variations exhibited by QSOs at fixed redshift. As a result, our red-
shift estimation process is limited by the intrinsic properties of the
model and not be the data quality. We are thus always in a quality
saturation domain, which is appropriate for the study of system-
atic redshift biases and ambiguities as these are not overshadowed
by large statistical errors from low signal-to-noise measurements.
Fainter and noisier samples would be additionally affectedby wider
confidence intervals for the observed photometry and would thus
show wider PDFs with larger true and estimated redshift errors.

We clean this catalogue by eliminating objects with missing
magnitudes in one or more bands and objects with untypicallylarge
photometric errors, eliminating in total 1659 of the 77429 objects
(∼ 2%). The remaining sample of 75770 objects is split half and
half into a model sample and a data sample, using even-numbered
and odd-numbered objects, respectively. The distributionof the two
samples is random and statistically similar in terms of magnitude,
redshift, and sky position.

3 METHOD: EMPIRICAL χ2 ESTIMATION

Theχ2-method rests on the following conditions to work properly:

1. We compare our data to a model, which needs to represent
the possible data appropriately. Using a sample from withinthe
observed data set for the model already ensures that data and
model are on a consistent calibration; this is often not the case
when external models are used, whether they are template-based
or empirical data from an independent project.

2. The parameter space of the model needs to be broad enough
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to cover all local minima of theχ2-distribution, which represent
alternative interpretations of the data. Thus, the model sample
needs to cover the whole range of parameters expected in the
data set; ideally it is a random subset, then the statisticalpriors
will be correct implicitly.

3. In practice the data-model comparison is probed on a discrete
grid, which needs to sample the data error distribution properly.
Thus, the model needs to be enlarged until its density avoids
undersampling; this issue is especially critical for data with am-
biguous interpretation: if the technique is expected to be sen-
sitive to a lower-probability secondary solution, this is the one
driving the sampling requirements.

4. We need to know the errors of our data, so that differences be-
tween data and model are translated intoχ2 measures and hence
probability density functions, while the model is presumedto be
error-free.

The empiricalχ2-method is virtually identical to the regularly
employed template-based method. The only difference is that we
use an empirical set of objects as a discrete model realisation. If we
trust that the model is a random subsample of the expected data,
then we can use the empirical objects with all the same weight.

We call cij the components in the vector of observables for
model objecti. These components could be all the fluxes in differ-
ent bands, or they could be colour indices, perhaps combinedwith
a single flux value to provide a normalisation. In the case of QSOs,
we note that their strong luminosity evolution compensatesthe dim-
ming with increased distance such that their magnitude distribution
hardly depends on redshift belowz ≈ 2.5; at higher redshift, virtu-
ally all the redshift constraints are in the colour signature from the
Lyman forest. That implies that there is little prior information in
their overall brightness, so that colour indices contain basically all
the redshift information (and explains why Ball et al. (2008) have
not found the magnitude priors to be useful).

The probability of a single model objecti to give rise to the
observed datacdata,j of a given data object is then

pi ∝ exp
−1/2

∑

j
[(cmodel,ij−cdata,j )/σj ]2

, (1)

whereσj is essentially a smoothing scale for the weight of
the association between a data object and a model object. In a
Bayesian framework, we wantσj to be a correct statistical error on
(cmodel,ij − cdata,j) so thatpi expresses the probability of model
object i to give rise to the observation of the data object. If the
model objects populate the space only sparsely, a smoothingscale
is even motivated in a Bayesian framework (see below).

The expectation value and error estimate for the redshift of
the given object follows trivially from the whole model set,after
normalising thepi to

∑

i
pi = 1:

〈zphot〉 =
∑

i

pi × zi (2)

σz =
1

1 + 〈zphot〉

√

1

n − 1

∑

i

pi(zi − 〈zphot〉)2 . (3)

We useσz as a redshift quality ranking, and as we show in
Sect. 4 objects with lowσz have small true redshift errors as well.

The full PDFpobj(z) is approximated by the combination of
all discrete instances (i.e. objects) in the model. It couldbe repre-
sented e.g. in discrete z-bins after sorting all model objects with
weightpi into the bins forzi. Any shortcomings of this PDF result
from the discrete nature and finite size of the model sample.

Owing to abundant ambiguities in the data, a good fraction
of PDFs contain two separate peaks. We thus test the PDF for bi-
modality and try to deblend it instead of simply adopting themean:
To this end we split the redshift range into two intervals separated at
〈zphot〉 and obtain two local solutions(〈zphot〉, σz)1/2. This could
already be seen as sufficient if the probability integrals contained
in the two different peaks were comparable. But if one peak isa
lot less pronounced, the initial mean estimate may lie within the
primary mode, so that thez-limit between the two intervals splits
off and diverts some of the signal from the primary mode into a
contamination of the secondary solution.

Hence, we do one more iteration, changing the splitting point
to a location in the middle of the two alternative estimates,and
redo the estimates again. If the PDF is in fact bimodal, thesetwo
solutions represent the two modes just as well as a single mode is
represented by the original estimate over the full range. But when
a uni-modal PDF is over-deblended with this approach, we find
the two resulting estimates to be very close in redshift. We decide
in favour of a bimodal PDF by requiring the redshift difference
between the two deblended solutions to be

1 + zphot,2

1 + zphot,1
− 1 > 0.4 . (4)

This heuristic limit was chosen after visually inspecting afew
hundred PDFs and their formal solutions. We note, that this dis-
tance requirement corresponds to the width of the redshift interval
over which the PDF is integrated for the ODDS parameter in the
BPZ code (Benitez 2000). When we consider the PDF bimodal,
then we flag the object as ambiguous, record the two solutions
and determine their relative probability fraction from integrating
the PDF over the two ranges. This procedure is sensitive evento
ambiguities with ap-ratio smaller than∼1-in-20.

The method can be trivially generalised to other object classes,
and thus objects can simultaneously be classified on the basis of
relative class probabilities and have their class-internal parame-
ters such as redshift estimated within a single framework. This ap-
proach has been demonstrated with template-based methods in the
COMBO-17 survey (Wolf et al. 2001, 2004, 2008).

If the model is not entirely appropriate for the data, thepi

could be biased away from the correct solution, which may then
appear improbable, and thus estimation mistakes might be made
confidently. While this is unlikely to happen with empiricalmodels,
it can easily result from a choice of inappropriate or incomplete
templates or priors, that lead to mismatches between the calibration
of data objects and model objects. Even with perfect match, large
grid steps can produce discretisation effects when the templates are
treated numerically as a discrete grid by the photo-z code.

In a template approachσj is often enlarged beyond the noise
in the data object to include an estimate of essentially unknown
but plausible errors in the model usingσ2

j = σ2
model,ij + σ2

data,j .
This has been implemented using either constant values providing
an error floor on object colours (e.g. Wolf et al. 2001) or template
error functions depending on wavelength and template parameters
(e.g. Brammer et al. 2008). As a result, the PDF widens to include
the correct solution even when the model is biased, and reduces the
rate of catastrophic estimation outliers. However, it should tend to
overestimate the statistical redshift errors.

In the following section, we first implement aχ2-error scale
that mimicks a template approach by choosingσj = σdata,j and
pretend the model to be free of errors. Although model biasesare
not an issue for our empirical model, the presence of model scatter
is relevant, but we reserve its rigourous treatment for Sect. 6.
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Figure 1. Photo-z quality vs. estimated errorσz (non-ambiguous objects
only); solid lines show cumulative samples withσz < σz,limit and dashed
lines differential samples atσz = σz,limit. Top left: The outlier fraction is
generally below 1%, but it diverges forσz → 0 as the tolerance3 × σz

goes to zero as well.Top right: The error estimatesσz are usually larger
than the true rms redshift scatter.Bottom left: The bias of the cumulative
samples remains within±0.003. Bottom right: Only 59% of the objects are
classed as unambiguous, and choosingσz < 0.1 selects most of them.

4 RESULTS USING DATA ERRORS ONLY

4.1 Overall performance: RMS, bias and outlier rates

For general discussion we use the data set withugriz photometry
and the morphology bit, although we briefly comment later on vari-
ations that drop the morphology bit or include relatively shallow
NIR photometry from 2MASS. We investigate the photo-z quality
for a continuous sequence of sub-samples ordered by the expected
redshift errorσz . Here, we first eliminate all objects flagged as am-
biguous (∼ 41%) and discuss them separately in Sect. 4.3 and 5.3.
We describe the true photo-z error of each object as

δz =
zphot − zspec

1 + zspec
. (5)

We determine the photo-z quality both for differential samples
of objects with expected errors in a small interval aroundσz =
σz,limit and for cumulative samples of objects with expected errors
up to a limit,σz < σz,limit. We characterise the photo-z quality of
any sample with the following numbers:

1. A fraction of outliers with|δz| > 3 × σz,limit

2. A typical photo-z error, i.e. the rmsδz of non-outliers
3. A photo-z bias, i.e. the meanδz of non-outliers
4. The fraction of the sample withσz < σz,limit among the full

data sample, i.e. the completeness.

The results are presented in Fig. 1. Outlier rates (top left)are
generally below 1%. The rate goes up as the tolerance goes to zero,
just because the true errors remain firmly above zero (atσz,limit <
0.02 an object with e.g.|δz| = 0.06 is already an outlier). Outliers
are more common atσz > 0.1 as well, but overall sufficiently rare
as to not affect the cumulative samples much.

The true redshift errors (top right) are on average correctly
ranked by the estimated errorsσz as shown by the monotony of

the dashed line representing the differential sample ordered byσz .
Objects with expectedσz < 0.05 have a trueδz rms of < 0.05
as well, but atσz > 0.05 errors are overestimated. This is not a
desirable statistical property and results from ignoring model errors
in the χ2-empirical approach. We explain this in depth in Sect. 6
and propose an appropriate procedure after discussing the interplay
of noise and smoothing scales in producing error estimates.

The photo-z bias (bottom left) is nearly zero for good-quality
objects and always< 0.003 for cumulative samples. Globally, the
method is designed to be bias-free, but non-random sub-samples (as
the ones plotted here) can always be locally biased. The fraction
of objects peaks atσz ≈ 0.05, but a cumulative sample must be
relaxed toσz,limit ≈ 0.1 to be> 50% complete (bottom right).

In summary, a good-quality subsample selected byσz < 0.1
contains half of all objects, shows a bias of−0.0015, a δz rms of
0.04 and0.9% outliers. In the following, we investigate the depen-
dence of performance on the desired sample completeness.

4.2 Selecting subsamples by estimated photo-z quality

Many scientific applications are driven by combined requirements
for sample size and sample quality. We could thus prefer to choose
a quality cutoff for samples from diagnostic diagrams of quality
against completeness. Thus, Fig. 2 shows the quality numbers over
completeness for cumulative samples. We differentiate between
overall samples (top row) and high-z only samples (bottom row).

Our default data set is shown by the solid line. The plots con-
firm that the outlier rate is small for all samples of medium-to-high
completeness (top left panel). The rms redshift error remains below
0.04 up to∼ 50% completeness (top centre panel), and only starts
shooting up when including the worst 15% (in terms ofσz) of the
unambiguous sample. The redshift bias is< 0.003 for any selec-
tion of unambiguous objects (top right panel). All solid lines in the
top row end at 59% completeness as the flagged ambiguous objects
are excluded here.

In the high-z sample (z > 2.5, bottom panels), there are fewer
ambiguities expected due to the strength of the Lyman-forest ab-
sorption. The completeness reaches 85% as there are only 15%de-
tected ambiguities. High-z QSOs can still be confused with low-z
objects that have redder SEDs due to substantial host light contri-
bution, but the outlier rate (mostly due to this effect) is less than
1% at> 55% completeness. The cumulative mean redshift error is
< 0.03, and changes little even to the highest completeness. This
is simply because at high redshift almost all objects have small σz

and true errors, and completeness increases very quickly with only
a little change inσz,limit. Also, the bias amplitude is< 10−3 across
most of the completeness range.

Finally, two more lines represent alternative data sets: the
long-dashed line is obtained when the morphology information
is dropped from theχ2 analysis, and the dotted line is obtained
when shallow JHK photometry from 2MASS is added. The results
change little, but generally more information means fewer ambigu-
ities as well as fewer outliers and smaller rms errors. In Fig. 2 we
would seem to see on the contrary an increasing outlier rate with
more information; this is, however, observed at fixed completeness
and caused by the outlier tolerance shrinking at fixed completeness
alongside smaller error estimates.

The main effect of added information is to help with breaking
ambiguities and thus enlarging the fraction of unambiguousPDFs,
i.e. the completeness. Indeed the curves shift to higher complete-
ness with more information, as the fraction of ambiguous objects
shrinks. The latter declines from 48% in theugriz-only data via
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Bayesian photo-z’s with empirical training 5

Figure 2. Cumulative photo-z quality in dependence of sample completeness: including more objects of worse and worse quality decreases the overall
sample quality.Top row: Adding information on top of theugriz photometry (2MASS data, morphology; weak constraints only) moves the curves to higher
completeness.Bottom row: QSO photo-z’s atz > 2.5 have low bias and rms values ofδz < 0.03. The whole high-redshift sample has only 0.3% outliers
with δz > 0.15. The shallow 2MASS NIR photometry and morphological data donot help in this redshift domain.

41% when adding the morphology bit to only 35% after adding
shallowJHK data as well. Atz > 2.5 most of the redshift infor-
mation is contained in the Lyman break, and neither morphology
nor shallow NIR data help.

Of course, the fraction of ambiguous objects is expected to
collapse dramatically when adding data that really breaks degen-
eracies such as deep GALEX UV data that helps withz < 2.5
objects (see e.g. Ball et al. 2008), and deeper NIR data that would
help with host galaxy light and higher-redshift objects. Adding such
data, however, is contrary to the scope of this paper, which is to in-
vestigate how our method deals with ambiguities (see next section).

4.3 Redshift ambiguities

Redshift ambiguities mean that objects from two or more different
redshift regimes appear in the same region of colour space. For a
given observed set of colours, two or more redshift solutions are
possible, and the most we can know beyond the alternative num-
bers is their relative probability. The ambiguity can only be broken
by adding some discriminating information such as photometry in
additional wavebands. Meanwhile, the practical question is how to
deal with those ambiguities present. Here, we consider redshift bi-
modalities as detected by our algorithm, and do not discuss higher-
order complications.

If redshift estimates are required for individual objects and sta-
tistical redshift distributions for samples are insufficient, there are
only two choices: (a) ignore ambiguous objects altogether,or (b)
trust the more probable alternative in any bimodal PDF. Our sam-
ple contains 15474 ambiguous objects with a mean probability ratio
of 78.0%:22.0% for the more probable vs. the less probable solu-
tion. If these probabilities are statistically meaningful, they ought
to represent the success rate of trusting the more probable alterna-

Figure 3. Redshift ambiguities are measured roughly statistically correct.
The fractionfhigh of ambiguous objects, where the higher-redshift mode is
correct, agrees with the probability fractionphigh of this mode in the PDF.

tive. In accordance with the estimate, we find for a fact that 77.9%
of ambiguous objects have been attributed to the correct alternative
(12051 measured vs. 12077 predicted, well within Poisson noise).
We also note, that when the known spectroscopic redshift is used
as a prior to choose the right alternative, the error properties are the
same as those of unambiguous objects, irrespective of whether we
look at the primary or secondary peak.

Fig. 3 demonstrates that our relative probabilities of ambigu-
ous objects are statistically meaningful even at a subtle level: here,
we sort objects into narrow bins of the relativep-fraction for the so-
lution at higher redshift,phigh, which is desired to represent the true
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fraction of objectsfhigh in this bin, for which the higher-z solution
is the correct choice. The figure shows that indeedfhigh ≈ phigh

everywhere. The relativep-fractions thus tell us roughly the risk
associated with believing either one of the ambiguous redshift al-
ternatives on an object-by-object basis.

We do not know how sensitive our ambiguity detection really
is to p-ratios of less than 1-in-20, corresponding tophigh . 0.05
or phigh & 0.95. Among our detected ambiguities 8% have ratios
more extreme than 1-in-20, and 1% even more extreme than 1-in-
50. In any case, ambiguities at very low levels exist and willremain
mostly undetected, causing catastrophic outliers at the correspond-
ing small rate. If a sample of objects has an ambiguity level of
1-in-50, e.g., they are likely to be classed unambiguous objects at
their more probable redshift, and 2% of them are bound to appear as
catastrophic redshift outliers. If e.g. 30% of an overall sample live
in regions of colour space with such a level of ambiguity, this will
produce a 0.6% fraction of unflagged outliers in the overall sample.
All existing unflagged outliers in our sample are easily explained
by low-level ambiguities remaining undetected.

If trusting risky individual redshifts is unacceptable forthe
purpose at hand, samples of ambiguous objects can at least beused
in a statistical sense, e.g. in the form of redshift distributionsn(z)
(see following section).

4.4 Redshift distributions

Several astrophysical applications do not necessarily require red-
shifts for individual objects, but can do with redshift distributions
for subsamples, e.g. in weak gravitational lensing. Such applica-
tions can easily make use of ambiguous objects as well, for which
redshift distributions are obtained reliably even though decisions
between ambiguous alternatives are risky on an individual basis.
The most general solution for any application would be of course to
represent any object by its full redshift probability function (PDF)
and give up on the concept of a single redshift value. However, we
may still continue to use single values occasionally in the interest
of data compression.

In Fig. 4 we look at the summed up distribution of redshifts:
comparing spectroscopic redshifts with photo-z’s we find good
overall agreement. For the photo-z distribution in the ambiguous
sample we have counted every object twice, once at each of theal-
ternative redshifts and using the relative probabilities as weights.
In the left panel we have represented objects simply by a peakat
their estimated redshifts〈zphot〉. We expect that true structure on
very small scales in redshifts space will be smoothed in photo-z
distributions given that photo-z errors mean a lower resolution in
observing redshift space.

However, we find some oscillations in then(zphot), which are
not or only weakly present in then(zspec); these have been termed
redshift focussing by some practitioners. One of the reasons for fo-
cussing is a local bias arising fromn(z) priors inherent in the em-
pirical estimation. Any local maximum inn(z) means that redshifts
near the peak are a-priori more probable than in the wings. Objects
in the wings then have their overall PDFs biased towards the peak.
Peaks are thus overpopulated and troughs inn(z) are depleted.

In the right panel we have used the fullp(z) functions of each
object and added them up to produce expectation values for the
redshift distributionn(z). This is much more similar to the correct
redshift distribution and indicates that the PDFs do contain very
useful information beyond the redshift expectation value.

Figure 4. Redshift distributionsn(z) from spectroscopic and photometric
origins are similar.Left: Objects are represented by〈zphot〉; ambiguous
objects are counted twice using the two redshifts with theirrelative proba-
bilities as weights.Right: Stacking object PDFs matchesn(z) much better.

4.5 Size of model sample

Generally, the model sample is required to cover the entire range of
colours seen in the data sample as otherwise some parts of thelatter
have no appropriate model to compare with and will be interpreted
wrongly. Hence, the volume of colour space covered by the model
is fixed, and the size of the model, i.e. the number of its discrete
members, then determines its local density in colour space.

We first assume a model distribution without any ambiguities,
which is thus not prone to catastrophic outliers. The local density
of model objects in colour space now decides how well the error
distribution of a data point is sampled. Undersampling can lead to

• missing the peak of the PDF
• a local bias in the most likely redshift and thus redshift aliasing
• larger redshift errors and
• an incorrect estimate of redshift confidence intervals

Thus, the density required for optimum performance is such
that even for well-measured objects with small photometricerror
ellipsoids, and even in sparsely populated areas of colour or redshift
space, the sampling theorem is fulfilled.

We now assume a model with ambiguities and focus on an af-
fected location, where two branches of the model cross in colour
space. Now, both branches are required to sample the error distri-
bution of the given data point. Is the density of model pointshigh
enough to render even the less populated branch clearly effective,
which is now the limiting factor if the ambiguity is to be detected
reliably? In this situation, the model density required is afunction
of the desired sensitivity to ambiguities. Protecting yourself against
the rarest possible high-ratio ambiguities requires clearly the most
massive model set imaginable.

Fig. 5 demonstrates the situation quantitatively by reporting
the photo-z quality for model samples of different size, where the
largest one is the original sample with 37885 objects and thesmall-
est one has only 1/64th of that, i.e. 592 objects. Again, the top row
reports results for the entire sample, while the bottom row only re-
ports on high-z objects. The two lines show the photo-z quality at
two fixed levels of completeness as a function ofNmodel, the num-
ber of objects in the model sample.

The most noticable change is a steep increase of outliers when
the model shrinks, resulting from ambiguities with extremep-
ratios becoming invisible in more sparsely sampled, discrete mod-
els when the last object of a more weakly populated branch dis-
appears. In contrast, changes in the bias and rms errors among the
non-outlying bulk of data objects are only moderate; these are de-
fined by the intrinsicly densest parts of the model, and are the last
statistics to change when the model shrinks to a near-useless size.
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Figure 5. Photo-z quality vs. size of the model sample at fixed completeness levels. The quality saturates with ever larger model samples when the photometric
error ellipsoids become massively oversampled. The properties of the good-quality bulk of objects (rms redshift errors and bias) do not change much with
model size. Outliers (here for fixed tolerance|δz| > 0.2) increase with shrinking model samples whose discrete nature results in loss of sensitivity for redshift
ambiguities, except for the high-z sample in which ambiguities are intrinsically rare.

5 UNDERSTANDING PHOTO-Z ISSUES

We remind the reader that we characterise the performance ofpho-
tometric redshifts by three parameters at given completeness, all of
which we want to optimise, while they keep posing challenges:

1. The rms of the redshift error is supported by the intrinsicscat-
ter of object properties at fixed redshift; enlarging the model
sample and getting ever more accurate photometry can not be
expected to help in this situation.

2. Sub-samples defined in colour, redshift or quality can have lo-
cally biased photo-z’s even though the overall sample has van-
ishing bias by design.

3. A small fraction of catastrophic outliers can always arise from
ambiguities that remain undetected due to large probability ra-
tios between the two alternatives; the only model to guard
against all of these is unfortunately just the complete set of spec-
troscopic redshifts for all objects in the whole survey.

In this section, we try to understand these factors using ide-
alised descriptions of a model and illustrate them with examples
from our data set. We hence investigate factors affecting the local
properties of photo-z’s in small regions of colour space.

5.1 Local RMS error support from intrinsic diversity

We assume an idealised situation for an analytic approach: an ab-
sence of global ambiguities, and a distribution of model anddata
following two simple rules in a local environment of colour space:

1. The mean colour〈c(z)〉 of objects at redshiftz drifts linearly

Figure 6. Example for the local rms error support from model diversity: At
z ≈ 3.7 the main redshift information is in theg−r colour; at fixed colour,
model redshift scatter is the same as theδz rms error in data sample.
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Figure 7. Variations in theN(z) of the model (i.e. the priors, centre left panel) cause a local bias ofzphot in samples selected byzspec (centre right panel)
but no bias ofzspec in samples selected byzphot or colour (right panel). See text for more details.

with z as〈c(z)〉 = c0 + β(z − z0); this applies to both model
and data since there is no miscalibration between them.

2. At everyz there is a Gaussian distribution in the intrinsic error-
free model coloursc(z) with an rmsσc,model independent ofz.
The errors in the data colours are denoted byσc,data.

We can then infer for the model that at fixed colourc there is a
Gaussian distribution inz with an rms ofσz,model = σc,model/β,
becausedz/dc = 1/β. An infinitely accurate colour measurement
c in the data will be attributed a PDF with a mean redshift estimate
〈z(c)〉 = z0 + (c − c0)/β and an rms ofσz,model, which is equal
to the rms of the true redshift errors found in a data sample.

When a colour error in the data is introduced, the redshift will
become less well constrained. Data points of objects at fixedz will
then appear with an effective observed colour scatter ofσ2

c,eff =
σ2

c,data + σ2
c,model. The mean redshift estimate will be unchanged

but the rms of the PDF will widen to

σ2
z,eff = (σc,eff/β)2 =

σ2
c,data

β2
+ σ2

z,model . (6)

Obviously, as long asσc,data < σc,model the intrinsic variety
in the model supports a lower bound in the redshift error. Thelatter
will only increase substantially due to noise in the data when it is
larger than the model variety.

We now illustrate this point with a concrete example from our
data set, and go through the numbers explicitly. We choose objects
with a colour ofg − r ≈ 1 that are mostly high-z objects scattered
aroundz ≈ 3.66. Their main redshift information is in theg − r
colour index, which brackets the continuum step over the Lyman-
α line due to the intergalactic Lyman-forest absorption, while the
other colours provide only weak constraints. We plot theg − r
colour of objects near this redshift in Fig. 6 and find a nearlylinear
colour-redshift relation.

From the data sample, we select objects in a narrow colour
interval of g − r = 1.00 ± 0.05 combined with a redshift in-
terval of |z − 3.66| < 0.3 to exclude rare outlying objects and
find 110 unambiguously estimated objects. We find their redshift
errors to have aδz rms of 0.024 and compare this now to the in-
trinsic redshift scatter found in the model. From the model,we se-
lect 117 objects using the same colour and redshift interval, and
expect them to determine the main mode in the PDF of the se-
lected data objects. We find the redshift distribution in themodel
to have a mean of 3.662 and an rms of 0.115, which translates into
σz = 0.115/(1 + 3.662) = 0.024. The data sample thus shows
precisely the errors expected from the redshift scatter inherent to
the model in the relevant location of colour space.

In this example, the photometric noise is too small to con-
tribute to the PDF and error sources. All objects in the data have
g−r colour errors below0.m04. We fit a local slope for the redshift-
colour relation nearz ≈ 3.7 and finddz/d(g − r) ≈ 0.73. The
propagation of photometric errors alone is thus expected tocon-
tribute only aδz rms of

dz

d(g − r)

σg−r

1 + z
= 0.73 × 0.04/(1 + 3.66) ≈ 0.006 . (7)

If the data included fainter objects with larger photometric
errors, then the colour range of model objects contributingto the
PDF would broaden and redshift errors would eventually be driven
by the photometric errors: an object withg − r = 1, e.g., needs
σg−r > 0.15 (i.e. larger than intrinsic scatter) for this to happen.

5.2 Local redshift biases

We continue to use the simple approximation from the previous
section and introduce a trend ofN(z) in the model sample which
will act as a prior; we assume a locally constant gradientdN/dz in
an environment ofz0 with a normalisation ofN(z0) = 1. A brief
calculation including this extension shows that the resulting PDF is
skewed by the non-flat prior, the redshift estimate is biasedand the
estimated error shrinks. The expectation value moves by

〈zeff〉 − z0 =
dN

dz

(

σ2
c,data

β2
+ σ2

z,model

)

=
dN

dz
σ2

z,eff (8)

whereσz,eff is given by Eqn. 6, and the formal rms is now

〈σ2
z,eff,biased〉 = σ2

z,eff −
(

dN

dz

)2

σ4
z,eff . (9)

We illustrate this point with an example from a region where
N(z) changes strongly withz in the model: Fig. 7 shows a region
nearz ≈ 3 with a nearly linear colour-redshift relation (left panel),
whereN(z) changes by a factor of∼ 2 in the space of∆z < 0.2,
equivalent todN/dz ≈ ±5 (or ∼ 20 if expressed on az/(1 + z)
scale, see centre left panel). Atz ≈ 2.9 a positive gradient leads to
an overestimation ofzphot and atz ≈ 3.3 a negative one leads to an
underestimation (see centre right panel). According to Eqn. 8, we
expect average biases inδz of ±0.02 at these two redshift points
(givenσz ≈ 0.03), which is roughly what we find in the data: at
z = 2.9±0.05 the bias is〈δz〉 = +0.016 and atz = 3.3±0.05 it
is 〈δz〉 = −0.018 (the use of az/(1 + z)-scale vs. az-scale may
be confusing; all quantities need to be on the same scale).
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Bayesian photo-z’s with empirical training 9

Figure 8. Sparse models are less sensitive to ambiguity.Left: A quarter of all detected ambiguous objects using the full model are classed as unambiguous
when the model is stripped to only 1 in every 64 objects, and many of those are then outliers.Centre: The colours for 108 outliers (zphot < 1, but true
z = [1.4, 1.9], see box in left panel) are plotted (black) on top of the plumeof colours of the full model atz = [1.4, 1.9]. Right: The sparse model does not
have much overlap with the 40 objects and suggests a near-zero probability for them to be atz > 1.4; their ambiguity is not detected any more.

Finally, we want to emphasise that such a bias is indeed not
particularly relevant for most photo-z applications as it is not ob-
served, whenδz is plotted overzphot instead ofzspec (see right
panel of Fig. 7). By design, the application of priors produces the
correctN(zspec) for slices inzphot- or colour space, although the
reverse is not true as exemplified above.

5.3 Local undetected ambiguities

The origin of outliers not flagged as ambiguous is a deficiencyof
the model. We try to give an order-of-magnitude estimate forthis
residual outlier risks. If we use the largest available model sample,
these estimates quantify a maximum risk, which could only becon-
strained further with the help from a hypothetical larger sample. If
we choose a smaller model sample for the photo-z’s on purpose,
then we can still derive better estimates of the expected outlier rate
from the larger one.

For a given object in the data with colourc and errorσc, the
PDF is mostly defined by the part of the model samples that re-
sides with the central 2σ-contours of its error ellipsoid. In order
to get any moderately reliable PDF, the model sample needs to
have at least some objects in this area; a faint ambiguity, i.e. a sec-
ondary branch with much lower object density in the same region
of colour space, is detected only if there is at least one object seen
from that branch. Furthermore, if we observe zero objects ofa sec-
ondary population, but assume a-priori that itis present with a flat
prior on a density above zero, the expectation value for its density
is 〈N〉 = 1 objects from Poissonian statistics. Thus, simply assum-
ing a model withNmodel,local objects in the central part of an error
ellipsoid, the residual risk for an undetected faint ambiguity is

p2nd =
1

Nmodel,local
. (10)

This is the maximum oulier risk attached to any single object
in this location of the data space. The risks-per-object (asoutput
by the code) add up whenever defining larger data samples from
different regions of colour space; they can not be reduced inPois-

sonian fashion by increasing the size of the data sample, butinstead
only by increasing the model sample.

However, the outlier risk can be reduced by stacking the PDFs
of several objects across a wider interval of colour space into a
summed redshift distributionn(z), because the number of objects
in the model contributing to all these PDFs together increases; in
this case,Nmodel,local counts all objects in the area of colour space
used for stacking. Of course, as we reduce the Poissonian outlier
risk and make the PDF more reliable, we also reduce the redshift
resolution as we integrate over a wider range of colour space. We
are then choosing trade-offs between resolution and reliability.

In Fig. 8 we illustrate the effect by comparing photo-z’s ob-
tained using a large model set with those obtained using a model
set of only 1/64th the size, which has been created from the large
one by sparse but random sub-sampling. Looking at the whole data
sample, we find that∼ 1/3 of the flagged ambiguous objects are
not flagged as ambiguous any more when the sparse model is used.
The left panel in Fig. 8 shows just these 5502 newly unambigu-
ous objects. The majority of them has still good photo-z estimates
as indicated by their location near the diagonal, but about 15% of
them have become outliers as a result of overlooking their ambigu-
ity when using the sparse model.

We now focus onto an area containing 108 such1/64-outliers
in the range ofz = [1.4, 1.9] and zphot,1/64 < 1 (see box in
left panel). The obvious interpretation is that in the colour space
occupied by those 108 (z>1.4)-objects, the model is dominated
by objects ofz < 1, although there is a secondary branch at
z = [1.4, 1.9] that is visible only in the full model and diluted
into discrete absence in the 1/64-model. Supporting this interpre-
tation, we compare the colours of the 1/64-outliers (black)with
the plume of model colours across the range ofz = [1.4, 1.9]. In
the centre panel, the full model is seen to cover the 1/64-outliers,
hence their PDFs contain a mode withinz = [1.4, 1.9], and ambi-
guity is detected. But in the right panel, the sparse model isseen to
mostly avoid the objects, which eliminates this mode in the PDFs
and makes them outliers. Given the small colour errors in thedata
a colour mismatch of> 0.m1 is already sufficient to suppress the
probability of consistency in theχ2 comparison.
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5.4 Size and incompleteness in model sample; propagation
into outliers and redshift bias

From the arguments in the previous section it is clear that the size
and any incompleteness of the model affects the residual outlier
risk. We need to distinguish between two kinds of incompleteness,
one from variations in targetting objects for spectroscopy, and one
from variations in recovering redshifts from target spectra:

• Incompleteness in targetting means that relatively fewer,but
randomly selected objects in a particular part of colour space are
included into the model sample. Thus, the priors are not implicitly
correct anymore, but this can be compensated by applying explicit
weights to the objects.
• Incompleteness in successfully recovering redshifts fromthe

spectra of target objects is likely to act non-randomly in redshift.
It is usually a result of a spectrograph reaching different depth at
different redshifts for different galaxy types, due to variations in
the strength of spectral features and in their visibility within the
instrumental wavelength range. This will omit an importantpart
of the model sample and wipe out its corresponding representation
in the PDFs. We point out, that the incompleteness of the PDF is
not reduced by simply enlarging the model set, but only by mak-
ing it more complete in the redshift recovery rate. Also, if the in-
completeness affects parts of redshift space strongly by creating
redshift deserts, it will translate directly into a similarfraction of
undetectable outliers.

The oulier risk translates into a redshift bias risk when averag-
ing the mean redshift of a subsample containing the outliers. At the
bright end, undetected outliers are more likely due to sparse sam-
pling of the colour space as a random model sample will contain
few bright objects in line with their natural scarcity. At the faint
end, they are more likely the result of instrumentally driven selec-
tive redshift incompleteness and can reach dramatically high rates
(see Newman 2008, and references therein). Also, the raw sizes of
data sample and model sample translate into simple Poissonian es-
timates of the expected errors on the mean redshifts.

The Poissonian error on the mean redshift of a subsample lo-
calised in colour space is limited by the error on the mean redshift
of the stacked PDF, i.e. the number of model objects and the width
of their redshift distribution, as well as by the data sample, whose
realisation may deviate according to its size:

σ〈z〉 = σz,PDF ×
√

1

Nmodel,local
+

1

Ndata,local
. (11)

The propagation of the maximum outlier risk into a maximum
bias risk also rests on assumptions of their redshift distribution. The
mean redshift error of outlying objects〈δzout〉 in a local region of
colour space may be anywhere between−1 + 1/(1 + zmax) and
+zmax. The maximum bias risk is then:

|〈δz〉| = |〈δzout〉| ×
(

ηnon−recov +
1

Nmodel,local

)

, (12)

whereηnon−recov is the incompleteness of the spectroscopic
redshift recovery, and the second factor quantifies the sensitivity
limit to ambiguities. If we approximate example numbers suppos-
ing |〈δzout〉| = 1, then a 20% spectroscopic incompleteness im-
plies a maximum redshift bias risk of|〈δz〉| = 0.2, far above any
of theδz rms values seen in our work. This is a maximum risk, and
better constraints require a better model sample.

This implies that spectroscopic incompleteness deserves by
far the greatest concern in empirical redshift estimation work. This

is not much of an issue for any of the bright SDSS samples, but very
important for any empirical photo-z work in magnitude regimes
where spectrographs do not provide near-100% completeness.

These are rough estimates for overall samples, but again our
code produces risk estimates per object, which allow elimination of
uncertain objects from samples entering follow-up analyses. Our
method is to put all spectroscopic target objects from the model
sample without a reliably recovered redshift into a separate model
and evaluate the fraction of the total PDF they account for ineach
individual object; this share of probability is attributeddirectly to a
residual outlier risk for the object in question.

5.5 Are there ideal sizes for model samples?

We quantify the ideal size for a complete (ηnon−recov = 0) model
sample, while for incomplete models the conclusion depend on
the selections being made for the follow-up analysis. We assume
that a data sample will be partitioned into subsamples with stacked
PDFs, or each object will be considered on an individual basis
(Ndata,local = 1); in either case, the critical factor is the size of
the model in the local region of the subsample or the individual
error ellipsoid, and our rms tolerance on the mean redshift.The
following applies if mean redshift of a sample is the critical figure
(as e.g. in gravitational lensing) while some applications(such as
BAO measurements) may not depend so much on outliers.

The potential rms error is given by Poissonian precision and
residual outlier risks, and these change with different powers of the
size of the local model sample (Eqn. 11 and 12). The two error
sources have similar impact if

Nmodel,local = 1/σ2
z,PDF , (13)

and their combined error estimate is

σ〈z〉 =
√

2/Nmodel,local . (14)

If the model has fewer objects than this, the mean redshift of
data subsamples is limited by outlier risks that decline∝ 1/N , and
if it has more it will be limited by redshift scatter that continues
to decline∝ 1/

√
N . If the balance is not ideal in a given model

sample and enlarging is not an option, there is the alternative of
changing redshift resolution and making subsamples cover differ-
ent ranges of redshift space. As long as the local colour-redshift
relation is vaguely linear, this would change model size with the
width of the redshift range,Nmodel,local ∝ σz,PDF; this changes
outlier risks in the opposite direction to Poissonian precision and
can be used to rebalance the error sources to an optimal mix.

If we take model incompleteness into consideration, it dom-
inates the error sources as soon asηnon−recov > 1/Nmodel,local.
Median redshifts, in contrast, are only weakly affected by outliers.

6 USING MODEL ERRORS IN THE χ2 ERROR SCALE
OR SMOOTHING FUNCTION

In the previous sections we used a model sample that is almost
noise-free in conjunction with aχ2 approach, which is only per-
fectly reliable when the model is exactly free of noise. We observed
that the error estimates showed deviations from the true rmserror
in Fig. 1 that we still want to explain. Also, future applications will
rely heavily on redshifts of faint objects with noisy photometry. In
this section we clarify the the role of noise for the choice oftheχ2-
error scale and its consequences forn(z) estimates, and take into
account the requirement for smoothing as well.
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Assuming that we use a model with full completeness, the
data sample and the model sample are drawn from the same par-
ent distributionφ(z, c) of objects in colour space. Noise, however,
smoothes these distributions into a new density functionp(z|c),
and may differ between the data and model sample.If both sam-
ples are smoothed to the same degree, theirp(z|c) are identical.
Then the photo-z PDF of any individual data object at location ci is
simply given byp(z|ci) as determined from the model. Otherwise,
we apply an operation to make the smoothing scales consistent. We
could also choose to smooth both data and model to a common
larger scale.

If we were prepared to give up the concept of a PDF for an
individual object, we could define regions in colour space and at-
tribute the integrated model properties in the region to thecorre-
sponding subsample of data objects distributed over that region. In
the following, we differentiate two cases, that of a constant target
smoothing scale, and that of one which varies across colour space.

6.1 Spatially homogeneous target smoothing scales

A spatially homogeneous target smoothing scale is straightforward
to deal with, as any object from the data or model sample needs
to be smoothed further by an amount that is trivially determined.
Every pair of data-model points can be compared separately:

1. If the errors of the model object are smaller than the data error,
σmodel < σdata, we need to smooth the model object further by
σ2

j = σ2
data −σ2

model. This is most easily achieved by replacing
the model object with a Gaussian of widthσj and evaluating it at
the location of the data objectci. We can thus simply use theχ2-
framework described before and useσj as the error or smooth-
ing scale. Note, that this smoothing scale is obtained bysub-
tracting the model error from the data error. In contrast,adding
these errors into the smoothing scale smoothes the model too
much compared to the data. In the case of an error-free model
we recover the usualχ2 error scaleσj = σdata.

2. If the errors are nearly identical, then the smoothing scales are
already matched. We find the smoothing scaleσj → 0 and the
number of model objectsN → 0 contributing to the solution
with diverging Poisson errors. Discretisation effects always call
for a sufficient smoothing scale driven by the density of points
in the model. We can choose a larger target smoothing scale for
both, or we definep(z) only for subsamples distributed over
a region in colour space. Thus, holding on to non-zero model
smoothing requires to smooth data points as well. This not only
wipes out previously present information, but needs to be car-
ried out rigourously (as in 3.) to obtain an unbiased PDF.

3. If the model error is larger than data error,σmodel > σdata,
we need to smooth the data object, which we implement by
resampling the data object as a Gaussian. Model smoothing is
still desired for numerical reasons, and a common target scale
for data and model needs to be chosen that is larger than either
one. Data smoothing is done by resampling as a GaussianG(ci)
with width σ2

resamp = σ2
target − σ2

data at manyci,j , and model
smoothing as before by evaluating a model Gaussian at theci,j

as in (1.), wherebyσ2
j = σ2

target − σ2
model.

Having p(z) for individual data objects conserves resolution
in the data sample that is lost when a commonp(z) is attributed to
subsamples.But it requires that either data errors are larger than
model errors from the start, or noise be introduced into the data
after observation, due to a discrete model asking for smoothing!

6.2 Spatially varying target smoothing scales

Here, we discuss only the option of spatially varying smoothing
scales that are identical for the data and model sample from the
start. Thus, the error scales are already matched, i.e.σj = 0 in the
χ2-expression, hence typically no model object would be foundat
the locationci of a data object. Again, the only option is to give up
on p(z)-expressions for individual objects, and to define instead a
volume in colour space, over which data objects are combinedinto
a subsample that has then(z) of the model within the same volume
attributed. However, not havingp(z) for individual objects means
a reduced resolution for the mapping from colour ton(z).

Anyone desiring to use spatially varying scales which differ
between data and model sample, will face the problem of finding
the target scale for an object in dependence of its original location
before the smoothing due to the present errors. This can onlybe
done as a first-order approximation using a representation of the
error scales that is already smoothed by the errors itself.

6.3 Error propagation through the χ2-expression and the
ideal smoothing scale

We continue to use the idealised example of a locally linearc(z)-
relation from Sect. 5.1, only that the model is now considered to
have a measurement error as well. Thus at fixed redshift, the model
has a Gaussian scatterσ2

c,model = σ2
c,model−int +σ2

c,model−err that
results from intrinsic scatter convolved with measurementerrors.

A data sample at true redshiftz has a colour scatterσc,data =
σ2

c,model−int +σ2
c,data−err that results from the same intrinsic scat-

ter but convolved with the data measurement errors. It translates
into a corresponding rms scatterσ〈z〉 in the redshift expectation
values given the local slope of thec(z)-relation:

σ2
〈z〉 =

(

σ2
c,model−int + σ2

c,data−error

)

×
(

dz

dc

)2

. (15)

This result does not depend on the choice of theχ2 error scale.
Only the width of the PDF, and hence the redshift error estimateσz ,
depends on theχ2 error scale, as it is a convolution of the model
scatter and the model smoothing scaleσj :

σ2
z =

(

σ2
c,model−int + σ2

c,model−error + σ2
j

)

×
(

dz

dc

)2

. (16)

Requiring that the PDF and error estimates are representative
of the true rms redshift errors, we ask thatσ〈z〉 = σz, which is
fulfilled as in Sect. 6.1 when using

σ2
j = σ2

c,data−err − σ2
c,model−error (17)

for a matched error scale. This implies again that the model
objects have smaller errors than the data objects, so that the de-
mands of a non-zero smoothing scale to overcome discretisation
effects and of the correct error scale can be met simultaneously.
The photometry of the query data set only needs to be as good as
the lower limit provided by a desired smoothing scale derived from
the density of the model points. Otherwise, we have to upholdthe
desired smoothing scale by introducing additional colour and red-
shift scatter into the data by resampling the data objects toa larger
matched error scale. This means that the photometry of our original
query data set was too good to be useful. Conversely, the level of
data errors drives the necessary density of model points to suppress
outlier risks as discussed in Sect. 5.
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Figure 9. Comparison of redshift distributionsn(zspec) and PDF-stacked
n(zphot); data and model errors are matched (left) or added (right). The
bottom panels show the difference of then(z) over the expected Poisson
error for every redshift bin: Matched errors produce nearlyPoissoniann(z)
without bias, while added errors produce biases and larger differences.

We point out the consequence of adding model and data errors
in theχ2 error scale: usingσ2

j = σ2
c,data−err + σ2

c,model−err, we
expect to overestimate the true errors by a factor of

σz

σ〈z〉

=

√

1 +
2σ2

c,model−error

σ2
c,model−int + σ2

c,data−error

. (18)

A brief numerical experiment is conducted to verify these con-
siderations: we scatter all our data objects to reach a new error of
0.m1414 in every colour index, and all our model objects to reach
now 0.m1. Following Eqn. 15 we expect the matched error scale to
produce an rmsδz error similar to〈σz〉, the mean width of the PDF,
while the added error scale should enlarge〈σz〉 by a degree that de-
pends on the intrinsic model scatter and in our case may reachup
to a factor of

√
2 where the intrinsic scatter vanishes.

We investigate first the high-z regime, where colour and red-
shift follow a simple relation. Looking at all objects withz > 3
but excluding statistical outliers with|δz| > 0.1 or σz > 0.1,
we measure the mean width of the PDF and the rmsδz error. In
Sect. 5.1 we measured an intrinsic scatter in the model colours of
σc,model−int ≃ 0.15 in this redshift regime, which predicts an in-
crease inσz by a factor of∼ 1.2 using Eqn. 18.

The matched error scale produces an rms of0.0291 and
〈σz〉 = 0.0291 in perfect agreement. With the added error scale
the rms remains almost unchanged at0.0279 but the error estimate
is increased by a factor of∼ 1.25 to 〈σz〉 = 0.0366. We take this as
empirical evidence that the added error scale overestimates errors
in line with the analytic expectations from the idealised example.

As a result the stacked PDF from the entire data sample could
be wrong near structures inn(z) or edges. In Fig. 9 we compare
them to the spectroscopic redshift distribution for both error scales.
The histogram plots (top row) make it difficult to spot the small
differences, but in the bottom row we show the difference between
the redshift histograms scaled by the expected Poisson noise in each
redshift bin, which isσ2

N = N2
data+N2

model for the difference. The
matched error scale shows no apparent bias and an rms scatterof
1.08 that is very close to Poissonian (= 1). All bins with 10 or less
objects (at the tails of the redshift range) have been eliminated for
this plot. In contrast, the added error scale shows driftingbiases and
an rms scatter roughly enlarged by

√
2.

Figure 10. Photo-z quality (as in Fig. 1) using noisy data, noisy model and
the matched error approach: The error estimatesσz are now comparable to
the true rms redshift scatter. Larger noise leads to fewer unambiguous PDFs
(completeness). However, bias and outliers remain broadlyas expected.

The conclusion is that the matched error scale approach is
an appropriate way to obtain estimates of the redshift distribution
which are virtually correct within Poisson noise.

We also repeat in Fig. 10 overall photo-z performance figures
for the noisy experiment using the matched error scale in theχ2.
We find now that the rmsδz errors follow roughly the error esti-
matesσz in the differential sample line, in contrast to the version in
Sect. 4 that ignored the model errors. Bias and outlier ratesremain
as low as before, but the completeness, i.e. the fraction of unam-
biguous PDFs, has dropped due to the larger errors and smoothing.
We revisit the low-noise case in the following section.

6.4 Revisiting the low-error case

Armed with the understanding of the impact of smoothing scales
onto estimated errors, we reconsider the results of Sect. 4.1, where
we decided to use the canonicalχ2-approach while ignoring the
model errors. Since the low-noise data were unaltered and ran-
domly split into data and model sample, the two were on a common
matched error scale to start with. The application of smoothing to
the model only has caused an overestimation of the redshift errors
(see Fig. 1), which can now be explained. Given equal errors and
our choice of scaleσdata = σmodel = σj , we expect to have over-
estimated errors by up to

√
2; an added error scale could even have

led to a factor of up to
√

3, all depending on the relative degree of
intrinsic scatter. The alternative of no smoothing suggested by the
error scales was of course ruled out by the discretisation effects.

We note, that Oyaizu et al. (2008b) estimated errors by
smoothing their model with a top-hat kernel function, of course
with the motivation to collect enough model objects for a good
definition of the PDF. However, they do not find an increase in
redshift errors as we do here, and we speculate that this may re-
sult from photometric errors being much smaller than the intrinsic
colour scatter and the density of their galaxy model sample being
extremely high, so that moderate smoothing would introduceonly
little non-locality and have a very small effect.

Just to prove how the incompatibility of smoothing scales
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Figure 11. Photo-z quality (compare with differential lines in Fig. 1)for
low-noise data using different smoothing scales:Right: The error estimates
σz are nearly identical to the true rms redshift scatter when using near-
zero smoothing as suggested by the matched error scale. Larger smoothing
overestimatesσz . Left: Smaller smoothing scales lead to larger noise in the
PDF and thus higher outlier risks (∼ 10% for σj = 0.m01).

propagates into inappropriate error estimates for the low-noise
SDSS QSO data used here, we rerun the experiment from Sect. 4.1
with two fixed scales ofσj = 0.m01, close to the desired zero scale
andσj = 0.m10, larger than the typicalσdata levels of0.m04. The
results are shown in Fig. 11 and compared to the original version
usingσdata. It is very clear that the near-zero smoothing produces
an excellent correspondence between theδz rms and the error es-
timateσz (right panel). Larger smoothing scales shift the curve to
the right towards progressively overestimated errors.

However, the left panel demonstrates the expected downside
of near-zero smoothing, which is a large (∼10%) fraction of out-
liers. These appear together with an increased fraction of objects
classed to have an unambiguous PDF. A shrinking smoothing func-
tion draws its PDF from fewer model objects, overlooks more true
ambiguities (see Eqn. 10) and produces more residual outliers. In
contrast, the large smoothing scale of0.m1 pushed outlier rates be-
low 1%, even to 0.1% in parts of the plot.

6.5 A practical requirement: a constant data error scale

The results above create a desire for two perhaps conflictingde-
mands:(i) we want to derive PDFs for individual objects using the
matched error scale, which requires a spatially homogeneous tar-
get smoothing scale.(ii) We want to keep smoothing scales on the
order of the data errors in order to use the signal contained in the
data rather than destroying it with further smoothing. However, if
some parts of the data are much noisier than others, they willdrive
the requirements for the target smoothing scale. Hence, we ideally
want to have a constant error across our data sample.

If we are concerned only with bright objects, these may have
small errors that may even be dominated by calibration noiseand
thus be approximately constant on a magnitude scale. On the con-
trary, when we are concerned with faint objects and diverging mag-
nitude errors, a flux scale is more useful. The errors of faintobjects
are essentially background noise and constant on a flux scale. Only
objects that are brighter than the background have their fluxerrors
growing due to their own Poisson noise or calibration noise.If these
are to be treated at the same time as faint objects, a transformed flux
scale could be introduced, which maps the mean error as a function
of flux onto a constant function. The above procedures could then
be exercised using transformed fluxes as object features.

A problem remains even for transformed fluxes, when a large
data set includes strong variations in observed depth, as the ideal
flux transformation function changes with depth. This challenge is

posed by strong variations in interstellar foreground absorption as
well. Since object features need to be de-reddened, the intrinsic
depth of the data set changes with the absorption level. In these
cases, a data set and its model sample may need to be broken down
into more homogeneous parts to allow for optimum treatment.

7 CONCLUSIONS

We have presented a method to obtain Bayesian photometric red-
shifts using theχ2-technique with empirical models. This approach
is intended to combine in one framework the two complementary
benefits ofχ2-template fitting and of empirical training sets as used
e.g. by neural networks. The advantage ofχ2-methods is that a
probability density function is created, which can be inspected for
ambiguities arising from multiple peaks. The advantage of empiri-
cal samples is that they can be made to match perfectly the distri-
bution and calibration appropriate for the data sample, as opposed
to templates that rely on negotiable assumptions. PDFs generated
with imperfect templates can still be unreliable, and wheretem-
plate errors are taken into account in theχ2, they widen the PDF
and increase the error estimates.

Our method produces reliable statistically correct PDFs ifa
complete empirical model is available. For incomplete models we
are able to quantify the mis-estimation risks associated with each
individual object. A very simplified description of the comparison
could be: Conventional NNs are accurate but unreliable withambi-
guities;χ2-template fitting is less accurate, but guards itself against
unreliability with PDFs and template errors; the newχ2-empirical
method is both accurate and reliable.

We used a data set full of ambiguities to demonstrate that the
method delivers its promises, i.e. the SDSS DR5 QSO sample with
∼ 75, 000 objects, split half and half into a data and a model sam-
ple. Objects with unambiguous PDFs show less than 1% outliers,
typical redshift errors< 0.05 and vanishing redshift bias. At higher
redshift (z > 2.5) these figures are a factor of∼ 2 better. The
outliers purely result from the limited size of the model sample,
while the rms errors are dominated by the instrinsic varietyof QSO
colours given the information content in the survey data.

Objects with PDFs classed as ambiguous correctly evaluate
the relative probability of the two possible solutions. This provides
either accurate weighting factors when using both interpretations
for an object in a later analysis, or an accurate outlier riskwhen us-
ing only the more probable solution. In the latter case, our method
predicted that in 78.0% of ambiguous objects the more probable
peak in the PDF would be the correct one, which was then found to
be true for 77.9% of them, different by less than Poisson noise.

The method had been inspired by the template-based photo-z
code employed in the CADIS and COMBO-17 surveys (Wolf et al.
1999, 2001), except that it replaces template realisationson a grid
with empirical model objects. It is thus also capable of classifying
objects with Bayesian probabilities into stars, galaxies,QSOs and
into various subclasses.

For noisy data we propose amatched error approach, which
is designed to compare data and model at common resolution
in colour space. This translates into aχ2-error scale given by
σ2

data − σ2
model, and we show that this method provides accurate

error estimates. In contrast, adding data and model errors in the
χ2-expression broadens the probability distribution and thus over-
estimates the rms redshift errors. Finally, we show that thematched
error scale in theχ2-empirical method reconstructs the redshift dis-
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tribution of a noisy data sample practically within Poissoniann(z)-
errors, if a complete albeit noisy empirical model is available.

The method is most easily implemented when object features
can be transformed onto a scale where data errors are constant and
model errors are smaller than data errors. Then the model smooth-
ing is provided by matching the error scales in theχ2 expression
and no data resampling is required. In this case, the procedure is
computationally very fast; e.g. the QSO sample in this work was
processed in 20 minutes on a year 2004 PowerPC Mac laptop.

Empirical models are more representative of the data, and thus
the derived PDFs are substantially more accurate than PDFs de-
rived from template fitting, allowing to trust redshifts, ambiguities
and outlier risk evaluations, which is critical for understanding sys-
tematics in large photo-z data sets. However, their limitations arise
principally from the size and completeness of the model sample.
Redshift-selective incompleteness as it often appears at the faint
end of spectroscopic surveys translates into a massive undetectable
outlier risk that can far exceed any of the other performancelim-
itations. While such incompleteness is the main challenge for any
empirical method, we provide a framework to evaluate catastrophic
risks for individual objects as to allow for their separate handling.

An important application of future photo-z work is in mas-
sive cosmological surveys for galaxy photo-z’s, which willindeed
require superb control of systematics such as redshift biases and
outliers. The results presented here for QSOs are not applicable to
galaxies in a quantitative sense, but our use of QSOs was moti-
vated by the rich ambiguities present, which for galaxies are only
expected in future large samples. When they become available,
they will benefit just as well from our method that derives robust
Bayesian photo-z’s from empirical samples and evaluates residual
risks for outlier rates and photo-z biases.
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